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Abstract: The energy market aims to manage risks associated with prices and volatility of the asset. It is a capital intensive 

market, rippled with a range of chaotic, complex and dynamic interaction among its supply and demand derivatives. Models help 

users forecast such interactions, to provide investors with empirical evidence of the price direction. Evolutionary modeling is an 

art, whose science seeks to analyze input data and yield an optimal, complete solution for which conventional methods yield a 

corresponding, non-cost effective solution. Its solutions are tractable, robust and low-cost with a tolerance of ambiguity, 

uncertainty and noise as applied to its input. Our study aims to predict the OPEC Oil market with data collected over the period. 
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1. Introduction 

The asset market has now become a focal point for 

diversification in the finance world with the energy market 

playing a dominant and crucial role. With an increased 

supply/demand, and heavy dependence on oil has also brought 

about a number of complexities ranging from production, 

storage, transportation and stringent regulation issue, all of 

which continue to plague its effective management (Laurenti 

and Fernandes, 2012). Market participants now invest, 

knowing that such asset yields interesting diversification 

benefits, significant reward cum positive investment returns to 

their financial portfolio (Ojugo, 2016) because oil currently 

accounts for over 10% of the actively traded assets and is the 

world’s largest consumed asset (Verleger, 1993). Investors and 

researchers must continue to seek effective means of futures 

trading via its supply/demand parameters (Ojugo and 

Ofualagba, 2016) so that empirical results based on their 

analytic findings can help further dispose participants to the 

Oil (energy) market. 

The recent plummet in price, seem like an indication to the 

end of the Oil-era. But, studies show (as in figure 2) that the 

global demand of oil continues to rise despite that demands 

from the Organization for Economic Co-operation and 

Development (OECD) nations has decreased. But, OPEC data 

shows that Oil’s overall demand is increasing with demands 

from non-OECD nations like China (EIA Report, 2009); And, 

that a significant amount of oil is supplied from ‘unstable’ 

Middle East connotes that more price fluctuations is to be 

welcomed as normal. Thus, prediction of oil price direction is 

useful for investors and market participants (Ojugo, 2016). 

It is common knowledge that taking a position in spot 

market, is not the best way to react to new data as such 

decision is besieged by high cost of transaction, storage costs, 

inconveniences, high premium and delivery costs among 

others, etc – especially if the investor is not interested in such 

asset; But, rather hedging for another asset and/or speculating 

by simply investing in hope of arbitrage opportunity. Thus, the 

futures market is more attractive because an investor can react 

to new data for the right reason (Silvapulle and Moosa, 1999). 

A cursory look at many studies showcases varied 

inconsistencies and discrepancies in their findings relating to 

spot- and futures-price. And whilst many of these studies 

agree on the importance of futures prices; only a few agree 

how important it is, as majority of the studies are based on 

analytic models. 

Bopp and Sitzer (1987) reveals that while futures price can 

predict cash price via improving the forecasts in 

econometrical models, only future contract of 1- to 2-months 

maturity are statistically significant as to contain new data. 

Also, Chan (1992) and Abosedra and Baghestani (2004) 

concurred that the cash market is a firm source of new data 
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and that futures price 1- to 12-months ahead yields significant 

forecast and useful for policy making. 

Moshiri and Foroutan (2005) examined the chaotic and 

nonlinear feat in futures prices, comparing ARMA/GARCH 

linear models against the nonlinear ANN model. Result 

showed ANN is statistically more significant and 

outperformed both ARMA and GARCH as futures price is 

stochastic and nonlinear. But, Kulkarni and Haidar (2009) 

observed 2-errors in the study: (a) use of raw data input in 

ANN, and (b) training data is quite old for the period used. 

Coppola (2007) proved that futures contracts reflects data 

about spot price’s future direction; while Wang et al (2005) in 

their hybrid model, merged web-mining for rule extraction, 

ANN and ARIMA model and claims the nonlinear integration 

of these 3-models outperforms any single model. But, 

Kulkarni and Haidar (2009) notes: (1) the controversial, 

unreliable nature of its rule-base system depends on a 

knowledgebase designed by expert czar as even many experts’ 

opinion(s) vary on the same task, and (2) neither the 

knowledgebase nor its corresponding rules were made 

available for further verification. 

Kulkarni and Haidar (2009) used ANN to predict price and 

volatility. They claimed their model performed well; But, we 

note a systemic errors in their design using feedforward 

network. For feedforward nets, all data are treated as new. 

Such new data become historic data after some iteration, and 

should not be used (as in their claim) since it cannot help the 

network identify feats of interest. In broadening our data 

length coverage, we treat all data (previous and current) as 

input for in-sample forecast, even if the data exhibit temporal 

dependence. A major error in their design is that as network 

grows larger via adding more data, feedforward network are 

practically difficult to implement (Ojugo et al, 2013a, b). 

Our study presents GANN model to predict price and 

volatilities of oil for short term structure using Gabillon model 

as preprocessor. Section 2 presents methodology, Section 3 

presents our model design, Section 4 details result and 

discussion, and Section 5 concludes the study. 

2. Methodology 

2.1. Motivation 

Why must we keep re-investigating prediction of oil futures 

price; while a plethora of studies and models to accomplish 

such, are available to us? We draw our statement of problem as 

thus: 

1. Plummet in ‘expected-rise’ of futures price implies that 

previous studies did a poor forecast. We need to know 

why and how it happened. 

2. Future price is a continuous ‘inconclusive’ task and its 

forecast grants us insights into expected values as the 

continued enhancement of futures price, update of 

sample-period and broadening of data coverage to 

enhance forecasts – will all aim to bring us closer to a 

definitive answer. 

3. Price forecast is crucial; But, costly. For policymakers in 

countries where price significantly affects governance 

policies and many other activities, obtaining the best 

possible forecast is of paramount importance and 

priority. 

4. The chaotic, volatile nature of oil market along with its 

range of complications makes imperative, early and 

accurate prediction to help dispose participants properly. 

Careful observance of spot prices alone, is insufficient 

as unknown input and inconclusive results may elude 

them. Thus, without careful analysis, this will lead to 

increased false-positive and true-negative rates 

classification activities (resolved in Section 3). 

5. Its data consist of ambiguities, impartial truth and noise 

– which must be resolved via a robust search so as to 

effectively classify observations and expected values, as 

in Section 3. 

6. Prediction in non-linear models is complex and difficult 

due to the chaotic and dynamic nature of task, and of 

unsupervised learning adopted in the models. And use 

of hill-climbing method further imposes speed 

constraint on NN so that its solutions are often trapped 

at local maxima. This is resolved with hybridization as 

the search for optima via hybrid is better than any single 

method. But, our model must be able to resolve 

statistical dependencies imposed on it by hybrid method 

and dataset (resolved in Section 3). 

7. Search for solution can often lead to overtraining, 

over-fitting and over-parameterization (inadequate and 

improper selection of parameter) of a model if a lesser 

data coverage is used. A larger dataset helps the model 

in its generalization as it seeks underlying probability in 

data feat(s) of interest as resolved in Section 3. 

The proposed genetic algorithm trained neural network 

aims to predict futures price and volatility as it propagates data 

(observed/current) to seek feats of interest. It chooses its 

output from a set of possible solution space data, to yield an 

output that is void of noise, ambiguities and guaranteed of 

high quality (Ojugo et al, 2013). The model can be further 

tuned to be robust so as to perform quantitative processing and 

ensure qualitative knowledge as its new language (Heppner 

and Grenander, 1990). 

2.2. Gabillon Model as Preprocessor 

Gabillon (1991) extended Gibson and Schwartz (1990) 

model for futures price forecast. The model assumes futures 

price depends on: (a) spot price of Oil and (b) cost to carry the 

physical oil. Investor’s attitude towards the spot price risk(s) 

and expected increase in spot price are irrelevant to the pricing 

of a futures contract on Oil. Spot price is given by Eq. 2 where 

µ(S) is mean (expected drift rate per unit in time) and σ(S) is 

standard deviation (volatility of the process), and dz is Wiener 

process given by: 

�� = 	������ + 	
�����	             (1) 

The futures price for short-term, independent of the 

stochastic process of the spot price with r as riskless interest 
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rate, Cc as marginal carry cost, Cy as marginal convenience 

yield and Cp is marginal influence yield, as given by: 

���, �� = ��������������� 	               (2) 

We include Cp shock for these reasons: (a) energy is about 

dominance. Nations seek to less dependent on others, for the 

more a nation depends on another – the more influence such 

nation she depends on, exerts her politics and policies over her, 

and (b) this creates new frontier for international politics with 

franchises made, nation policy interest aligned, treaties 

brokered; And thus, leads to off-channel sales via diversion 

tactics from non-OPEC nations, non-observance in limit 

placed by regulatory bodies like OPEC etc. 

2.3. Artificial Neural Network (ANN) 

ANN consists of interconnected neurons that learn via 

example (Abraham, 2005). As it processes data, its neurons 

share data and adjust their weights and bias via firing, to 

strengthen connection between its synapses (Caudill, 1987; 

Fausett, 1994). As learning occurs, its weights and biases are 

adjusted and data is converted via its activation function, 

which modulates its associated input to learn the nonlinear 

feats exhibited in the model data and yields an output (Mandic 

and Chambers, 2001) as in Eq. 3: 

∅ = 	������ = � ∑ �� ∗ ���	 
!"#          (3) 

It thus attempts to translate into mathematical model, 

biological processing principles and generate in its fastest time, 

the predictive outcome of a task. It derives possible outcomes 

from experience and recognizes behavioural feats of interest 

from historic data – to suggest an optimal solution of high 

quality and void of over-fitting, irrespective of modification 

made to it via other approximations with multiple agents 

(Dawson and Wilby 2001a). It connections are set with either 

apriori, or post-priori knowledge that trains the network to 

learn patterns that changes its weight and bias based on a rule 

(Beven and Binley, 1992; Bishop, 1995). Learning is grouped 

into: supervised, unsupervised and reinforcement, which is 

encoded via its input, hidden and output layers to make for two 

configurations: feedforward net where data flows directly from 

input to output and extends over multiple layers), or recurrent 

net has feedback with dynamic feats to evolve the net as it 

undergoes relaxation to a stable state where its output changes 

no more. In some task, if output change is significant – then 

dynamic behaviour yields its output (Ojugo et al, 2013b). 

The nature of oil market is such that its prediction also 

requires previous knowledge. Thus, we adopt recurrent 

(Jordan) net to incorporate previous dataset feats of interest as 

input variables into model. Thus, it allows previous dataset 

and previous output to be feedback as input into model’s 

hidden units (Rajurkar et al, 2004; Karunanthis et al, 1994) to 

yield an output. Its correlated weights are interconnected with 

Wi.j as weight between input and hidden layers, Woj is bias and 

xi is market input data sent to yield an output via 

tangent/sigmoid transfer function as in Eq. 4 and Eq. 5 (Minns, 

1998; Chakraborty, 2010). 

$!% = &'� + ∑ (! ∗ &!� 
!"# 	           (4) 

�)$!%* = +
#�	,-.∗/01 − 	1	                  (5) 

Our Jordan net is constructed by adding a context layer to 

(modify) a multilayered feedforward. This will help it retain 

data between iterations. On start of the algorithm, the context 

layer is initialized to zero so that output from first iteration is 

fed back as input into hidden layer (Perez and Marwala, 2011) 

– so that for the next time step, previous contents of the hidden 

layer are then passed unto context layer, which helps to yield a 

new input that is also resent back again as into hidden layer in 

another time-step (Regianni and Rientjes, 2005). Weights are 

recomputed in same manner for new connections fro/to its 

context layer from hidden layer. And, training aims at best fit 

data weights computed via Tansig function, which assumes an 

approximation influence of data points at its center. Thus, the 

function decreases with distance from its center. Its Euclidean 

length (rj) is distance between vector y = (y1,...,ym) and center 

(w1j,...,wmj) as: 

4% = 567 − 8%65 = 9∑ �7! −&!��+ 
!"# :½	      (6) 

The suitable transfer function is applied to rj: 

∅)4%* = 	∅|67 − 8%6|	               (7) 

Finally, output k receives weighted combination as: 

7= = &' +∑ >?%= ∗ ∅)4%*@ =A
%"# &' + ∑ )?%= ∗ ∅||7 − 8%||*	A

%"#      (8) 

2.4. Genetic Algorithm (GA) 

GA consists of a population propped for selection via 

evolution principles so that each potential solution is an 

individual for which optimal is found using four operators as 

below (Coello et al, 2004 and Reynolds, 1994). Its fitness 

function determines how close an agent is to optimal solution 

so that agents that are close to its fitness value are said to be fit. 

The operators include (Ojugo et al, 2013a,b): 

a. Initialize – Data is encoded into forms suitable for 

selection. Each encodings type has its merit. Binary 

encoding is computationally more expensive. Decimal 

encoding has greater diversity in chromosome and 

greater variance of pools generated; float-point encoding 

or its combination is more efficient than binary. Thus, it 

encode as fixed length vectors for one or more pools of 

different types. The fitness function evaluates how close 

a solution is to its optimal – after which they are chosen 

for reproduction. If solution is found, function is good; 

else, is bad and not selected for crossover. The fitness 

function has knowledge of task. If more solutions are 

found, the higher its fitness value. 

b. Selection – best fit individuals close to optimal are 

chosen to mate. The larger the number of selected, the 

better the chances of yielding fitter individuals. This 

continues until one is chosen, from the last two/three 

remaining solutions, to become selected parents to new 

offspring. Selection ensures the fittest individuals are 
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chosen for mating but also allows for less fit individuals 

from the pool and the fittest to be selected. A selection 

that only mates the fittest is elitist and often leads to 

converging at local optima. 

c. Crossover ensures best fit individual genes are 

exchanged to yield a new, fitter pool. There are two 

crossover types (depends on encoding type used): (a) 

simple crossover for binary encoded pool. It allows 

single- or multi-point cross with genes from a parent, and 

(b) arithmetic crossover allows new pool to be created by 

adding an individual’s percentage to another. 

d. Mutation alters genes by changing its sequence, to 

ensure a new pool converges to global minima (instead 

of local optima). Algorithm stops if optimal is found, or 

after a number of runs creates new pool (this 

computationally expensive), or when no better solution 

is found. Genes may change based on probability of 

mutation rate. Mutation improves the much needed 

diversity in reproduction and its algorithm. 

2.5. Data Sampling and Collection 

A critical feat in ANN design is its dataset size and 

frequency. This affects its final result. For short-term forecast, 

high frequency data is preferred (i.e. daily or intraday) – 

though not always available and very costly. Thus, we use 

weekly/monthly data because it is less noisy. A second 

important feat is data coverage (Kulkarni and Haidar, 2009). 

The more data point is used in ANN, the better its 

generalization. Some modelers discard older dataset when 

dealing with financial data as economic conditions change 

over time. Smith (1993), McNeils (2005) and Kulkarni and 

Haidar (2009) believe that training ANN with old irrelevant 

data alongside current conditions can result in poor model 

generalization. However, we believe that broadening our data 

coverage helps ANN avoid pitfalls of over-parameterization, 

overtraining and over-fitting. OPEC data is available at: 

http://investexcel.net/opec-basket-histor-excel.htm. 

 

Figure 1. Nigerian Forcados Spot Price with Date. 

 

Figure 2. Worldwide Consumption of Oil. 

The study is limited to secondary data obtained from The 

Energy Information Administration on monthly all countries 

spot price and consumption of crude oil from March 1976 – 

December 2015. The GANN model is used in the computation 

of the price direction and implied volatility used to determine 

the fluctuations in price direction; while some other trading 

strategies used in hedging commodities like crude oil are 

looked at. 

2.6. Rationale for the Model 

1. The Gabillon Model provides a good start point (initial) 

solution for the GANN model – as all data are treated as 

new in feedforward network and thus, previous data do 

not help identify data feats of interest (in this case, 

accurate price and volatility forecast) even if such 

observed datasets exhibits temporal dependence. 

2. The structural dependencies imposed by dataset and by 

adopted hybrid methods, on the model, is resolved via its 

ability to store earlier generated data from previous 

layer(s), unlike feedforward networks that must be 

expanded and extended to represent such complex, 

dynamic patterns and scenario as this (Kuan, 1994; 

Ojugo et al, 2013). 

3. As network becomes larger and more data are fed in, 

feedforward net makes it practical difficult to implement. 

Jordan net overcomes this difficulty via its internal 

feedbacks that inputs back its output into the hidden unit 

with a time delay so that output at t+1 becomes input at 

later t – making it better suited for such task. 

4. Jordan net is more powerful and computationally more 

plausible. Its backpropagation-in-time algorithm uses 

output at t, as input alongside new input to compute 

output at t+1 in response to market data changes 

(Mandic and Chambers, 2001) via Tansig activation 

function yk. It sums all input, receives target value of 

input patterns, compute error data, weight correction 

updates in layers (cj
k) and bias weights correction 

updates (co
k). Its error is sent back from output layer into 

input nodes via error backpropagation (to find weights 

that estimates target output with selected accuracy) to 

correct its weights. Weights are modified by minimizing 
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error between target and computed outputs, at the end of 

each forward pass. If the error is higher than selected 

value, process continues with a reverse pass; else, training 

stops. Weights are updated via mean square error until a 

minimal error is achieved (Ursem et al, 2002). 

3. Experimental Model 

Our model hinges on 3-basic methods: (a) Gabillon model, 

(b) Jordan neural network, and (c) Genetic algorithm as in 

figure 2. Data pre-processing is quite a sensitive task as it 

often destroys the inbuilt structure in an original dataset 

(Azoff, 1994; Vanstone, 2005). Thus, as opposed to the use of 

a weak stationary process, we implement thus: 

1. A major feat of ANN is in its learning ability with 

advanced algorithms such as backpropagation with 

momentum to resolve issues in using a weak stationary 

process as justified by Kulkarni and Haidar (2009). 

2. The idea and behaviour of the oil market that is rippled 

with shock and fluctuations (due to volatility) is the focal 

point and reason for predicting price direction. This, 

allows participants to classify contango and 

backwardation. As such, proper modeling and 

parameterization of the oil market is critical such that the 

dataset must reflect such behaviours too. 

3. Replacing a non-stationary, dynamic data with 

weak-stationary one will lead to false-positives and 

true-negatives result, which will also mislead market 

participants and policymakers. 

4. Influence of shock cannot be overemphasized; And 

though, it lingers over various steps, forecast accuracy 

must not be trade-off for easy implementation and likely 

agreement of result. 

5. Using non-stationary data makes easier ANN to estimate 

general characteristics and feats in dataset; rather, than 

actual relationship (Refenes, 1995). Thus, data looses 

originality, quality and inbuilt structures via such 

transformation advocated in Kulkarni and Haidar (2009) 

since forecasts retrieved overtime as result has the same 

nature and structure required as output for forecasting 

price direction and volatility. 

The market as a model that allows data (historical, current 

and update samples) as input so that market participants react 

based on their dispositions, speculations, analysis etc to result 

in an output closing price for an asset, which is an aggregation 

of their activities. Imitating the market, our model tries to map 

the adopted available data to desirable target so that its 

forecast is with a certain degree of accuracy and an acceptable 

degree of error (Refenes, 1995). 

 

Figure 3. Modified Model selection to mimic the Market. 

 

Figure 4. Dataflow Diagram of the Hybrid Genetic Algorithm Trained Neural Network. 
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We use ANN as nonparametric and nonlinear 

mapping-model (Azoff, 1994) with no prior assumption of 

task – so that the sample updates used as data coverage is 

expanded will help model recall price direction 

(contango/backwardation) for better forecast. And the dataset 

is harnessed to speak for itself (Azoff, 1994). Unlike Kulkarni 

and Haidar (2009), we adopt a recurrent ANN (as better suited 

to estimate nonlinear, continuous function) to forecast oil 

prices direction, test if futures prices with newer data predicts 

price direction in near futures and if data in futures price 

integrated with spot-price yields better forecast with much 

attention paid to finding an optimal solution in the GANN 

model, which will seek to harmonize a benchmark from 

current and past data embedded in futures price as in figure 4. 

3.1. Modeling 

The proposed experimental model is employed as: 

a. First, we use the Gabillion model as a preprocessor 

classifier to help forecast futures prices and volatilities 

of contracts in the oil market. This will in turn propagates 

the values of selected data as further input to the model 

as enhanced, defined variable classes that are partitioned 

into data-points. 

b. Dataset is grouped into: training, retraining and testing, 

and used to initialize the GANN model. The Jordan net is 

an unsupervised, self-learning model whose 

optimization is achieved via GA’s recombination and 

mutation. For our Jordan net, we use a multilayered 

perceptron (feedforward) net with short-memory (i.e. 

time-lag network) with local recurrent connections, 

which requires a smaller network to learn temporal task. 

This is because – irrespective of how large the network 

and data grows, it is more plausible and computationally 

more powerful than other adaptive models as it uses 

backpropagation-in-time and momentum learning to 

train the network so that output at t is used along with 

new data to compute output at t+1 in response to the 

phenomenon’s dynamism and chaotic nature. 

GA recombines and mutates the dataset so that model 

autonomously forecasts futures price. Model is initialized for 

data selection via the preprocessor Gabillon model. 

Knowledge of the task has direct impact on how model 

processes the data, determines how close a solution is, and 

how the algorithm is employed. Model stops as best individual 

has a fitness of 0 (Campolo et al, 1999; Dawson and Wilby 

2001b). Our ANN uses BP-in-time and momentum learning, 

which uses error derivative propagated back to neurons to 

adjust its weight updates as thus (Ojugo et al, 2015a,b,c): 

1. Set all weights to small random values. 

2. Input to each node: xi input from previous node, wi is 

weight – so that sigmoid function computes thus: 

B�CD�	E =	∈ ����	              (9) 

GD�CD�	8 = ��(�=	 1
�1+�−(�	         (10) 

3. Its errors, desired and actual output is sent back to nodes 

with updated weights via Eq. 10 (wij is weight from node 

i to j at t, ŋ is learning rate, oj is output of j; µj is error for 

node j). So: 

�!%�� + 1� = �!% + ŋ��I�          (11) 

Output node: �� = JI��1 − I����� − I��	    (12) 

Hidden nodes with µk as next nodal error term: 

�� = JI��1 − I�� ∈ �J. &�J	         (13) 

c. Thirdly, we initialize GANN with dataset from Gabillon 

preprocessor model so that agents are selected from the 

pool via a tournament method. The tournament method 

is used because it is easier, more efficient to code, best 

suit for parallel architectures and its selection is easily 

adjusted as it allots random numbers to agents. Their 

fitness function is computed to determine mating agents 

and their corresponding solutions so that they are made 

available as a new pool from single parent. We use a 

multipoint crossover to introduce chaos and volatility as 

in the market. Mutation helps the network to learn all 

non-linear, dynamic feats in dataset. With agents in 

original pool from single parent, network uses Gaussian 

distribution to randomly generate data corresponding to 

crossover points. And as new parents contribute to pool, 

it yields new agents whose genetic makeup is a 

combination of both parents. Mutation is applied to yield 

agents that also undergo further mutation that 

re-allocates to them new random values. The number of 

mutation applied depends on how far GA progresses on 

the model (i.e. how fit the fittest agent is in the pool). 

This equals the fitness of the fittest individual divided by 

2. New agents are selected to replace old ones of low 

fitness – to create a new pool. The process continues 

until individual with a fitness value of 0 is found - 

indicating solution has been reached (Branke, 2001). 

3.2. Model Performance 

We evaluate model’s performance via its computed 

coefficient of efficiency (COE), mean square error (MSE), 

mean absolute error (MAE) and mean relative error (MRE), 

and COE (R) to show the model’s efficiency. A model with 

minimum error is considered, best choice. 

L�M = 	1 �N 	∑ 9�8C� − 8�I�2:#/+ 
!"#          (14) 

LQM = 	1 �N 	∑ |8C� − 8�I|	 
!"#              (15) 

LRM = 	1 �N 	∑
|8C��S!'|

S!'
	 

!"#                 (16) 

Model validation should not be performed by single 

researcher or research group; But rather, a scientific dialogue – 

as the improper model application along with its ambiguous 

results often presented by modelers that impedes such 

dialogue. The aim of this hybrid thus, is to a great extent 
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minimize and reduce the confusion in financial data 

time-series. We use the MLP model as a benchmark to 

measure our model performance. 

Table 1. Comparative Model Performance. 

Model 
Training 

COE (R) MSE MAE MRE 

GGANN 0.982 0.282 0.328 0.213 

MLP 0.515 0.4309 0.665 0.8708 

Cross-Validation 

Jordan 0.892 0.329 0.231 0.1901 

MLP 0.512 0.686 0.712 1.109 

Testing 

Jordan 0.966 0.296 0.219 0.1710 

MLP 0.641 0.654 0.518 1.385 

The model performance table as above implies that forecast 

of futures prices with newer data yields efficient price 

direction in near futures. The expansion of our data coverage 

reveal also that spot-price integrated with futures price yields 

better forecast with much attention paid to finding an optimal 

solution in the GANN model. 

3.3. Experimental Findings and Analysis 

Though recurrent net takes time to converge; Our 

hybridization help speed ANN process so that model converge 

after 3minutes and 29seconds with 500 iterations on 

stand-alone machine. While, network keeps various numbers 

of previous steps in memory (context) layer, its result varies 

for each retraining time-step and is in tandem with the chaotic 

and dynamic conditions of the dataset and volatility. Also, 

though the Jordan NN require more hidden neurons to 

converge due to context layer, our use of MLP with 

momentum – works in place of it. The choice of activation 

function, weight/bias, and learning rate are determined by the 

experiments. The model leads to fast convergence, and higher 

hit rate. 

 

Figure 5. Futures price direction and volatility. 

Figure 5 show futures price direction monthly forecast for 

2016 and 2017. The spot price for each month is monthly 

average oil price (dollars per barrel) and its volatility is 

estimated from prices in previous year. For 2016, volatility vary 

between 1.9012 and 0.312; And for 2017, volatility varies 

between 0.16 and 0.3542 for 12-months (52 weeks) futures 

maturity. Thus, the oil price still go up due to demand; Rather, 

than plummet in the near future. However, energy is about 

dominance and a lot of international politics are displayed when 

energy is concerned due to vested interests. These result in 

various shocks ranging from convenience yield etc. 

Also, studies of oil price direction emphasize the role of 

interest rates and convenience yield (adjusted spot-futures 

spread) to confirm that spot price normally exceed discounted 

futures. Though most studies do not explain why such 

‘backwardation’ is normal, it is a result of hedging and 

speculations. We also noted it is far better to hold a physical 

asset than hold futures contracts as proposed by hedging. Also, 

convenience yield behaves nonlinearly; And, price response to 

convenience yield is also nonlinear. Thus, futures price are 

informative about future spot prices only when spot prices 

substantially exceed futures. 

Producer hedging is observed as a way forward such that if 

spot-price of oil is $x/barrel at t and producer expect price to 

fluctuate between t and T (maturity time for hedge). If 

producer is more concerned about risk of prices falling below 

$y/barrel and prepared to accept maximum price of $z/barrel. 

Hedging allows participants to buy at $y/barrel put and sell at 

$z/barrel call. This limits backwardation (downside) and 

contango (upside) price risks to the range between $y/barrel 

and $z/barrel. If oil prices falls below $y/barrel at t, $z call 

option is worthless and the $y put option is exercised to grant 

the producer the right to sell its output at $y/barrel (no matter 

how low prices go). If prices rise over $z/barrel, the $y put 

option becomes worthless as $z call option is exercised and 

producer will sell at $z/barrel (no matter how high prices go). 

But, if prices are between $y/barrel and $z/barrel, neither of 

the options is exercised so that the producer sells at the 
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prevailing market price. This is known as a collar. The strike 

price of the option can be set at any level, but the put and call 

options must be equally far out-of-the money if the cost of the 

put and call is to be the same. If the costs of the options are the 

same, the strategy is known as a zero collar (Cherry, 2007; 

Dontwi, Dedu and Davis, 2010). 

4. Conclusion 

The following recommendations were made: 

1. Nigeria is a mono-product, reactive nation that solely 

depends on Oil. Her politics/policies are enmeshed in 

price fluctuations. Thus, her policymakers must devote 

great effort towards regular updates in price change for 

effective politics/policy implementation as she seeks 

new funding alternative and become forward thinking. 

Thus, she must open her investment as well as advance 

innovative research to improve her local contents and 

human capital. The futures prices will continue to 

fluctuate plus, no sane economy effectively plans with 

such volatility as non-OPEC members will continue to 

sell at cheaper prices just to dispose their commodity. 

2. Energy is about dominance, and nations seek to less 

depend on commodities that enslave them to other 

nations as possible. Various system to help us live better 

with cleaner environ depends on Oil. So be it oil or its 

alternative, energy will continue to experience structure 

price fluctuations and volatility because nations will seek 

to be less dependent on others via enforced use of their 

local products. 

3. Our analysts should always strategize to keep up with 

new innovations and shifts in paradigm from one source 

of energy to another. So that with a plummet or outright 

non-dependence, we have to be prepared for such 

outcomes. 

4. Cutting edge innovation will always advance as vehicles 

for great change. Nigeria cannot be left out in this change. 

Our dependence on oil has led us to recession. 

Government must harness the plethora of tools, analysts 

and academia at their disposition for better productivity. 

Singapore as a nation has no single natural resources; Yet, 

today – their standard of living as proven by financial 

times and fox business – exceeds that of the United 

Kingdom. Japan closed her borders to all form of imports 

and today, they are a super nation. China, still invests 

heavily on human capital. Human capital development 

cannot be over-emphasized as it is the key to innovation, 

production of any kind and real progress and 

advancement. 

Oil is vital for economic growth in both industrialized and 

developing nations. And the oil market is engulfed and 

endangered by speculations in the finance market, politics, 

extreme weather phenomena, among others – which accounts 

for its increased price fluctuations and volatility. The price 

fluctuation effect extends its influence over a large number of 

goods and services with direct impact on economies. Thus, to 

reduce its negative impact, it is imperative to predict price 

direction(s) regularly. But, some fundamental parameters 

(such as oil supply, demand inventory, GDP, seasonal data, 

jumps and spikes etc) are not readily available on daily scale. 

These dynamic and chaotic events all adds to the complexity 

involved in the prediction of oil price and volatility (Kulkarni 

and Haidar, 2009). 

Focus on models to predict futures price direction and 

volatility must continue, since futures price reacts faster to 

new data than spot price. Such forecast allow investors to 

harness the many benefits of the market such as low 

transaction cost, high liquidity, premium etc. Such infusion of 

new-market-related data help investors dispose themselves to 

either buy or sell in the market (Kulkarni and Haidar, 2009), 

and empirical evidences provided beckon on investors to 

harness the many merits of the model without trading a 

physical asset; But, rather using only contracts or bonds 

(Ojugo, 2016). 

To judge the price implication of fitting structural models, 

or apply it as symbiotic informed decision – on other assets – 

all of which have different market structures and fundamentals, 

is time-consuming, non-cost effective and may not add no 

more value than just being an extrapolation from the current or 

spot price. 
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