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Abstract: We use the New Keynesian continuous-time framework to theoretically investigate the effects of a lag in a central 

bank’s response to economic fluctuations (i.e., monetary policy lag) on local equilibrium determinacy. In the case of a policy 

without lag, equilibrium is indeterminate even though a central bank’s policy response is sufficiently active. However, in the case 

of a policy with lag, an active monetary policy can contribute to local equilibrium determinacy if the lag is modest. 
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1. Introduction 

Many studies have examined equilibrium determinacy in 

the New Keynesian (NK) model. The NK model has a 

dynamic stochastic general equilibrium (DSGE) framework 

that incorporates factors pertaining to the stickiness of both 

prices and wages. The standard NK model derives a 

well-known monetary policy norm called the Taylor principle: 

the central bank should increase (decrease) the nominal 

interest rate by more than a one-for-one ratio in response to 

an increase (decrease) in the inflation rate.
1
 

Bernanke and Woodford [5], Carlstrom and Fuerst [9], and 

Benhabib, Schmitt-Grohé and Uribe [3, 4] consider a 

situation where the nominal interest rate is changed in 

response to past inflation rates, a policy rule called the 

backward-looking interest-rate rule. Moreover, they consider 

a situation where the nominal interest rate is changed in 

response to future anticipated inflation rates, called the 

forward-looking interest-rate rule. A series of their studies 

reveals that the backward-looking interest-rate rule increases 

the possibility of equilibrium determinacy, whereas the 

forward-looking interest-rate rule may decrease this 

possibility. 

                                                             
1This is derived from Taylor [19]. Woodford [24], Galí [15], and Walsh [23] 

are introductory textbooks to the NK model. 

Furthermore, Bilbiie [6] considers the existence of limited 

asset market participation in a standard cashless NK model. 

On the basis of this assumption, he demonstrates that 

equilibrium can be locally determinate even if the Taylor 

principle does not hold. However, Buffie [8] indicates that 

this result is strongly dependent on the assumption that real 

wages are highly flexible. If this assumption is relaxed, then 

the Taylor principle reasserts itself as a necessary and 

sufficient condition for local determinacy. 

Thus, while the effects of monetary policies on economic 

stability (i.e., equilibrium determinacy) have been intensively 

explored in recent years,
2
 few studies have examined policy 

lags. Friedman [14] notably examines the effects of policy 

lags on economic stability but does not develop a theoretical 

analysis. 

Asada and Yoshida [1] and Yoshida and Asada [25] 

theoretically investigate the impacts of a fiscal policy lag on 

economic stability using descriptive frameworks that do not 

have micro-foundations. Moreover, Tsuzuki [21] examines 

the effects of a monetary policy lag using an NK model with 

                                                             
2Carlstrom and Fuerst [11] and Tsuzuki [22] consider a rule wherein the 

nominal interest rate is changed not in response to the inflation rate but to 

asset prices. Such a rule represents the practice of asset-price targeting. 

Carlstrom and Fuerst [11] show that asset-price targeting increases the 

possibility of indeterminacy; however, Tsuzuki [22] shows that Carlstrom and 

Fuerst’s [11] result can be overturned by introducing technological changes 

induced by educational investment. 
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the assumption of money in the utility function (MIUF). 

These studies obtain the same conclusion, i.e., a policy lag 

causes economic instability. 

This study uses an NK model that adopts the assumption 

of money in the production function (MIPF) based on 

Benhabib, Schmitt-Grohé and Uribe [4] in order to analyze 

the effects of a monetary policy lag as in Tsuzuki [21]. This 

minor change vastly alters the model’s dynamic property and 

yields a major implication: a policy lag can contribute to 

local equilibrium determinacy. 

This study proceeds as follows: Section 2 presents a set of 

fundamental equations for the model economy. Section 3 

analyzes the normal case in which a policy lag does not exist. 

Section 4 analyzes the case in which a monetary policy lag 

exists. Section 5 presents our conclusion. 

2. The Model 

We now present a standard NK MIPF framework. The 

model economy is compounded from household–firm units i 

( � ∈ [0,1]), the central bank, and the government. Firm i 

produces a differentiated good i with an input of money. 

Households aggregate various types of differentiated goods 

and consume them. 

2.1. Intratemporal Optimization 

Households aggregate differentiated goods via the 

Dixit–Stiglitz function:
3
 

� = 
� ��

��
�� ���



��
, 

where y is the volume of the composite good; ��  is the 

volume of good i; and � (> 1) is the elasticity of substitution 

among differentiated goods. 

Given the price of good i, �� , the price of composite goods 

p, and the volume of composite goods y, each household then 

determines the volume of ��  that minimizes the total cost 

� �������� . The first-order condition for cost minimization is 

given as follows: 

 �� = ���� ��� �, (1) 

where p is the price level, which is given by 

� = �� ��������� � ���
. 

2.2. Intertemporal Optimization 

We formulate the producing technology of firm i as follows: 

 �� = �� , (2) 

where �� is the real cash balance required to produce good i, 

                                                             
3
See Dixit and Stiglitz [12] and Blanchard and Kiyotaki [7]. 

and 0 < " < 1. 

Household–firm unit i obtains utility from consumption #� 
and disutility from price revisions $� ≡ �&� ��⁄ . For simplicity, 

we assume that price revisions incur costs only when prices 

change at a rate different from the steady-state value $∗.4 The 

utility function of household–firm unit i can thus be 

represented as follows: 

ln #� − ,
- .$� − $∗/-, 

where 0 (> 0) denotes price stickiness: the larger the value of 0 , the stickier the price. We followed Rotemberg’s [18] 

formulation of price revision costs, namely, a quadratic 

function. 

Assuming that the assets held by household–firm unit i, 

denoted by 1�, are composed of money 2� and bonds 3� , we 

obtain 

1� = 2� + 3� . 
We also assume that the government collects a lump-sum 

tax X from household–firm units. Accordingly, assets increase 

with rises in income and interest but decrease with 

consumption and tax, and hence, we obtain 

 1&� = ���� + 53� − �#� − �6, (3) 

where R is the nominal interest rate for bonds. 

Rewriting (3) in real terms, we obtain 

 7&� = ��� �� + 87� − #� − 6 − 5��, (4) 

where 7� = 1� �⁄  is real asset balances; and 8 = 5 − $ is 

the real interest rate. 

The government’s intertemporal budget constraint is 

represented as follows: 

6 = 5 9
�, 

which implies that government policy is of a Ricardian type 

(see Benhabib, Schmitt-Grohé and Uribe [4, Section 1.2] for 

details). 

Household–firm unit i determines the sequences of #� and $� , subject to the demand function for good i in (1), the 

production function in (2), and the budget constraint in (4), 

that will maximize the discounted present value of a utility 

stream given as follows: 

:� = � �ln #� − ,
- .$� − $∗/-� ;�<=�>?� , 

where @  ( > 0 ) is the household–firm units’ subjective 

discount rate. 

Let us define the Hamiltonian function as follows: 

ℋ ≡ ln #� − 02 .$� − $∗/- 
                                                             
4These costs can be interpreted as psychological stresses caused by price 

negotiations. 
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+D� E��� ���� ��� � + 87� − #� − 6 − 5 F���� ��� �G
��H I + D-$��� , 

where D�  and D-  are the co-state variables of state 

variables 7� and �� , respectively. 

The first-order conditions for optimality are given as 

follows: 

 
Jℋ
JK� = �

K� − D� = 0, (5) 

 
Jℋ
JL� = −0.$� − $∗/ + D-�� = 0, (6) 

 D&� = @D� − Jℋ
JM� = .@ − 8/D�, (7) 

D&- = @D- − Jℋ
J�� = @D- − D� 
.1 − �/ N�� + �5 �

 ��
�H�� N���� − D-$�. (8) 

The transversality conditions are given as follows: 

lim=→? 7�.>/;�<= = 0, 

lim=→? ��.>/;�<= = 0. 

Applying the symmetry condition, we drop subscript i 

from #�, �� , �� , and $�. Then (5)–(8) can be summarized in 

the following equations: 

 Euler equation: K&
K = 5 − $ − @, (9) 

 Phillips curve: $& = @.$ − $∗/ − .���/N
,K − �aN�H

, K . (10) 

2.3. Monetary Policy 

2.3.1. Generalized Interest-Rate Rule 

The generalized interest-rate rule, which assumes that the 

nominal interest rate R responds to the weighted mean of past 

and present inflation rates, can be represented as follows: 

 5 = 5∗ + b �� $.c/d.c/�c − $∗=�? �, (11) 

where 5∗ is the targeted level of the nominal interest rate; $∗ is the target inflation rate level (= steady-state value of 

the inflation rate); and D (> 0) is the elasticity of the nominal 

interest rate with respect to the inflation rate. Accordingly, if b > 1, then monetary policy is active, whereas if b < 1, it 

is passive. The function d.c/ is the weighting factor of a 

stream of past and present inflation rates, � $.c/�c=�? , and is 

given by 

d.c/ = �e
f�e .=�g/h��

.e��/! ;�hj.=�g/. 
This function can also be interpreted as a density function 

with the property of � d.c/�c = 1=�? , where the mean is k 

and the variance is k- l⁄ . Note that n takes positive integer 

numbers and k > 0. 

 

Figure 1. Function d.c/. 

When l → 1 , d.c/  becomes an exponential function, .1 k⁄ /;�.� f⁄ /.=�g/  (see Fig. 1).5 The model of Benhabib, 

Schmitt-Grohé and Uribe [4, Section 2] corresponds to this 

                                                             
5We assume k = 1.2 and > = 0. 

case. When l ≥ 2, d.c/ becomes a unimodal function that 

reaches a maximum at c = > − .l − 1/k l⁄ , 6  and when 

                                                             
6 Tsuzuki [20] compares cases where l = 2  and l = 3 . He numerically 

demonstrates that local determinacy can be established with smaller values of k for l = 3 in comparison for the case of l = 2. 
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l → ∞, it becomes a density function with zero variance; that 

is, d.c/ becomes a vertical line at > − k. 

2.3.2. Normal Interest-Rate Rule 

The normal interest-rate rule assumes that the nominal 

interest rate R responds to the current inflation rate $ , 

corresponding to the case where l → ∞ and k → 0 in (11); 

that is 

 5 = 5∗ + b.$ − $∗/. (12) 

2.3.3. Interest-Rate Rule with Policy Lag 

When l → ∞ and k > 0 in (11), then the interest-rate 

rule can be represented as follows: 

 5.>/ = 5∗ + b.$.> − k/ − $∗/. (13) 

We can consider this equation as depicting the situation of 

a fixed policy lag in the normal interest-rate rule in (12); in 

other words, a time lag of k > 0 exists in the interest rate’s 

response to business fluctuations. 

3. Case of No Policy Lag 

3.1. Case with the Interest-Rate Rule in (12) 

Considering the goods market equilibrium condition of � = #, the model economy represented by (9), (10), and (12) 

can then be summarized in the following system of differential 

equations: 

#& = [5∗ + b.$ − $∗/ − $ − @]#, 

$& = @.$ − $∗/ − ���
, − �

, [5∗ + b.$ − $∗/]#��HH .   (14) 

The steady-state values of system (14) are given as 

follows: 

#∗ = � ���
� ��a∗� H��H, $∗ = 5∗ − @.       (15) 

In NK economics, the concepts of equilibrium determinacy 

and indeterminacy are used as the stability criteria. NK 

scholars first distinguish two types of variables: the jump 

variable and the non-jump variable. If economic agents can 

arbitrarily determine the initial value of a variable, then that 

variable is considered a jump variable. In contrast, if the 

initial value is historically given and cannot be determined by 

economic agents, then this variable is a non-jump variable. 

Second, NK experts consider the uniqueness of the 

equilibrium path. If a candidate for the equilibrium path that 

converges to or on the steady state uniquely exists, then the 

equilibrium is determinate; however, if multiple paths can 

exist, then the equilibrium is indeterminate. 

Previous studies have demonstrated that local determinacy 

around the steady state of system (14) is given by the 

following proposition (proof is presented in Appendix A.1): 

Proposition 3.1 Under the interest-rate rule in (12), if @ > q-b and b > 1, then equilibrium is locally determinate, 

where q- ≡ �
, .#∗/��HH > 0 ; however, if @ < q-b  and 

b > 1, or b < 1, then equilibrium is indeterminate.7 

In an NK model that adopts the MIUF approach, which 

corresponds to the case in which q- = 0 in our model, the 

necessary and sufficient condition for local equilibrium 

determinacy is given by b > 1, which is the so-called Taylor 

principle. On the other hand, in our model (adopting the 

MIPF approach), condition b > 1 is not the only necessary 

condition; @ > q-b  is also required to hold for local 

equilibrium determinacy.8 

3.2. Quantitative Analysis of Parameter Constraints 

Table 1. Parameter values (quarter) 

r s t u 

0.6 21 0.005 200 

Following Benhabib, Schmitt-Grohé and Uribe [4], let us 

assume plausible parameter values as shown in Table 1 and 

further assume that 5∗ = 0.015. Under this specification, we 

can calculate the value of @ q-⁄  as 0.00075. Therefore, we 

can assume that inequality @ < q-b generally holds. 

Thus, equilibrium is generally indeterminate even if the 

central bank’s policy stance is sufficiently active. In the 

following section, however, we show that an active policy 

stance can contribute to local determinacy if a monetary 

policy lag exists. 

4. Case of a Positive Policy Lag 

4.1. Case with the Interest-Rate Rule in (13) 

Using (13) instead of (12), the model economy would then 

be represented by the following system of delay differential 

equations: 

#&.>/ = [5∗ + b.$.> − k/ − $∗/ − $.>/ − @]#.>/, 

$& .>/ = @.$.>/ − $∗/ − 1 − �0  

− �
, [5∗ + b.$.> − k/ − $∗/]#.>/��HH .    (16) 

The steady-state values of system (16) are given in (15). To 

analyze the local dynamics, we linearize system (16) around 

                                                             
7 Considering D (representing the activeness of monetary policy) as a 

bifurcation parameter, a Hopf bifurcation occurs at b = bw ≡ @ q-⁄  under 

the condition that b > 1 ; i.e., the following conditions of the Hopf 

bifurcation theorem are satisfied at b = bw : (a) trace.x�/ = 0  and (b) �trace. x�/ �b⁄ ≠ 0  (see Gandolfo [16, Section 16] for details of the 

theorem). Therefore, for a certain region of D in the neighborhood of bw, 

cycles exist around the steady state. If cycles exist for b < bw, they are stable 

(case of supercritical bifurcation); however, if cycles exist for b > bw, they 

are unstable (case of subcritical bifurcation). It is worth noting that 

equilibrium is locally determinate but globally indeterminate in the former 

case. This result was first shown by Benhabib, Schmitt-Grohé and Uribe [4] 

using a MIPF model incorporating a backward-looking interest-rate rule, 

which corresponds to the case where l → 1 in (11). 
8For details of the argument concerning the difference between the MIUF and 

MIPF approaches, see Feenstra [13] and Carlstrom and Fuerst [10]. 
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the steady state and obtain the following equations: 

#̂&.>/ = [b${.> − k/ − ${.>/]#∗, 

${& .>/ = @${.>/ − q-b${.> − k/ − q�#̂.>/,      (17) 

where #̂.>/ ≡ #.>/ − #∗ , ${.>/ ≡ $.>/ − $∗ , and q� ≡
�� 
 | �

, 5∗.#∗/��|HH . 

Assuming the exponential functions of #̂.>/ = }�;~= and ${.>/ = }-;~= as the solutions of this system and substituting 

these into system (17), we obtain 


 � −.b;�~f − 1/#∗
q� � − @ + q-b;�~f� �#̂.>/${.>/� = �00�. 

For non-trivial solutions to exist, the determinant of the 

left-hand side matrix must equal zero: 

Δ-.�/ ≡ �- − @� − q�#∗ + .q-b� + q�b#∗/;�~f = 0, (18) 

which is the characteristic equation of system (17). 

An equation with an exponential term as in (18) is known to 

have infinite solutions.
9
 The two endogenous variables in 

system (16), # and $, are jump variables. Therefore, if just 

two of the infinite number of roots have positive real parts, 

then the equilibrium is locally determinate. However, if the 

number of roots with positive real parts is less than two, the 

equilibrium is indeterminate; if it is greater than two, then an 

equilibrium does not exist (i.e., the steady state is unstable). 

Considering the argument developed in Section 3.2, we 

assume the following condition: 

Assumption 4.1 t < ���. 

In addition, in order to observe the stabilizing effect of lags, 

we assume that if a policy lag does not exist then equilibrium 

is indeterminate, even under an active monetary policy. 

Assumption 4.2 � > 1. 

Based on these assumptions, we analyze the effects of a 

policy lag on local equilibrium determinacy. The procedures 

are given as follows
10

: 

(1) We characterize the points (if any) at which the 

equilibrium dynamics can change, i.e., points at which the 

real root of zero or the pure imaginary roots appear. These 

points are referred to as the crossing points. 

(2) We reveal the directions of changes in the signs of the 

real parts of roots when k crosses the crossing points. 

4.2. Crossing Points 

4.2.1. Real Root of Zero 

Substituting � = 0  into (18), we obtain Δ-.0/ =q�#∗.b − 1/ = 0. This equality cannot hold as long as b ≠ 1. 

Therefore, under Assumption 4.2, � = 0 cannot be a root and 

the signs of the real roots never change. 

                                                             
9See Chapter 3 in Bellman and Cooke [2]. 
10We follow Matsumoto and Szidarovszky [17] for the methods of analysis. 

4.2.2. Pure Imaginary Roots 

Substituting � = ��  (where z = imaginary part > 0 ; � = √−1) into (18),11 we obtain 

−�- − @�� − q�#∗ + .q-b�� + q�b#∗/;�f�� = 0. 

Applying Euler’s formula (∀� ∈ ℝ,  ;±�� = cos � ± � sin �) 

yields 

−�- − q�#∗ + q-b� sin k� + q�b#∗ cos k� + �[−@� +q-b� cos k� − q�b#∗ sin k�] = 0.  

For this equality to hold, both the real and imaginary parts 

of this equation must equal zero; that is 

b.q-� sin k� + q�#∗ cos k�/ = �- + q�#∗     (19) 

b.q�#∗ sin k� − q-� cos k�/ = −@�        (20) 

Using (19) and (20), we can obtain 

cos k� = �|.��K∗��|</���|.K∗/|
�.��|.K∗/|��||�|/           (21) 

where 2$ℎ < k� < 2$.1 + ℎ/, ℎ = 0, 1, 2, 3, ⋯. 

Furthermore, the sum of the square of (19) and (20) gives 

the following fourth degree equation of z: 

�� + .2q�#∗ + @- − q--b-/�- + q�-.#∗/-.1 − b-/ = 0. 

Solving for �-, we obtain 

�±- = �.-��K∗�<|��||�|/±√�
-         (22) 

where � ≡ .2q�#∗ + @- − q--b-/- − 4q�-.#∗/-.1 − b-/. 

Under Assumption 4.2, we obtain −4q�-.#∗/-.1 − b-/ >0 . Therefore, ��- > 0 and ��- < 0 . Substitute a real and 

positive value of z (i.e., �� > 0) into (21) and solve for k to 

obtain 

 k� = �
�� cos�� ���| .��K∗��|</���|.K∗/|

����|.K∗/|��||��|� � , ℎ = 0, 1, 2, 3, ⋯. (23) 

Thus, an infinite number of values of k (i.e., k�, k�, k-, ⋯) that generate pure imaginary roots exist. 

4.3. Direction of Crossing 

This section reveals the directions of changes in the signs of 

the real parts of complex roots when k  crosses k� . This 

direction is determined by the sign of �Re.�/ �k|~����⁄ . If �Re.�/ �k|~����⁄ > 0  for any value of h, then the roots 

always intersect the imaginary axis of the complex plane from 

left to right with an increase in k, i.e., the number of roots 

with positive real parts increases at each time of crossing. 

Incidentally, as demonstrated by Proposition 3.1, the signs 

of the real parts of all roots are negative when k = 0 . 

Therefore, based on continuity of roots, we can state that if �Re.�/ �k|~����⁄ > 0 for any value of h, then there are 2h 

                                                             
11Pure imaginary roots are always conjugated. Therefore, we can assume � > 0 without loss of generality. 
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complex roots with positive real parts in the region of k ∈ .k���, k�/ (where k�� = 0). 

For convenience, we observe the sign of Re.�� �k/��|~����⁄  instead of �Re.�/ �k|~����⁄ . Equation 

(18) demonstrates that the following inequality holds (see 

Appendix A.2): 

�Re ��~
�f��� ~����

> 0. 

Therefore, we can state that 2h complex roots with positive 

real parts exist in the region of k ∈ .k���, k�/  (where k�� = 0). We can thus offer the following proposition: 

Proposition 4.1 Under the interest-rate rule in (13), if @ < q-b and b > 1, then an equilibrium is indeterminate for k ∈ .0, k�/; it is locally determinate for  k ∈ .k�, k�/, and 

nonexistent for k ∈ .k�, ∞/. 

This proposition implies that the central bank should seek 

a modest lag in its policy response in order to establish local 

equilibrium determinacy; if the lag is extremely large then 

equilibrium does not exist, whereas if it is too small then 

indeterminacy occurs. 

4.4. Numerical Example 

Let us consider a numerical example. On the basis of the 

parameter values shown in Table 1, we derive Fig. 2, which 

depicts the sets .k�, b/ (where ℎ = 0, 1, 2) satisfying (23) on 

the k-b plane. These are the crossing curves. 

In the left-hand side region of the curve k�, a root with 

positive real parts does not exist, and accordingly, the 

equilibrium is indeterminate. In the region between curves k� 

and k�, exactly two roots with positive real parts exist, and 

hence, the equilibrium is locally determinate. Likewise, in the 

right-hand side region of curve k�, at least four roots with 

positive real parts exist, and therefore, equilibrium does not 

exist. 

For example, when b = 1.5 , the equilibrium is locally 

determinate for k ∈ .0.157,0.786/ . This implies that the 

monetary policy lag that would achieve local equilibrium 

determinacy is 2–10 weeks. 

 

Figure 2. Crossing curves. 

5. Conclusion 

We have proposed a continuous-time NK framework 

incorporating a monetary policy rule that considers a lag in the 

central bank’s response to economic fluctuations to examine 

local equilibrium determinacy. 

In case of no policy lag, an equilibrium is indeterminate 

under the plausible parameter setup (@ < q-b ) even if a 

central bank’s policy response is sufficiently active. However, 

in case of positive policy lag, local determinacy can be 

established if the policy stance is sufficiently active and the 

policy lag is moderate. If a lag is extremely large, then 

equilibrium does not exist; however, if it is too small, 

indeterminacy occurs. This result suggests that intentional 

control of the timing of policy implementation can have a 

stabilizing influence. 

Thus, if a policy lag is extremely large, an economy will 

never attain the steady state. Therefore, we can also conclude 

that a policy lag can possibly be considered a factor in 
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long-run instability. 

A. Appendix 

A.1. Equilibrium Determinacy of System (14) 

The Jacobian matrix of system (14) evaluated at the steady 

state can be given as follows: 

x� = � 0 .b − 1/#∗
−q� @ − q-b � , 

where q� ≡ �� 
 | �

, 5∗.#∗/��|HH > 0 and q- ≡ �
, .#∗/��HH > 0. 

The characteristic equation of this system is given by 

 Δ�.�/ ≡ |�¤ − x�| = �- + ¥�� + ¥- = 0. (A.1) 

where 

¥� = −trace(x�) − (@ − q-b), ¥- = det(x�) = (b − 1)q�#∗. 

Case with � > 1 

We first consider the case in which b > 1  (i.e., ¥- =det (x�) > 0). If @ > q-b (i.e., −¥� = trace(x�) > 0), then 

(A.1) has two roots with positive real parts (Note that the 

value of trace equals the sum of roots and that of the 

determinant equals the product of the roots). Therefore, if b > 1  and @ > q-b , then the equilibrium is locally 

determinate. 

However, if @ < q-b  (i.e., −¥� = trace(x�) < 0 ), then 

(A.1) has two roots with negative real parts. Therefore, the 

equilibrium is indeterminate. 

Case with � < 1 

In this case, ¥- = det (x�) < 0. Therefore, (A.1) has one 

positive and one negative real root, and hence, the equilibrium 

is indeterminate. 

A.2. Direction of Crossing 

Differentiating (18) with respect to k, we obtain 

§2� − @ + q-b;�~f − (q-b� + q�b#∗)k;�~f¨ �~
�f =

(q-b� + q�b#∗)�;�f~, 

or equivalently 

��~
�f��� = (-~�<)©jª��|�

(�|�~����K∗)~ − f
~, 

where ;f~ is derived from (18) by 

;f~ = �|�~����K∗
�~|�<~���K∗. 

Therefore, we obtain 

c�«l ��¬­(~)
�f �~����

 = c�«l ���~
�f����~����

=
c�«l �Re ® -~�<

~(�~|�<~���K∗) + �|�
~(�|�~����K∗) − f

~¯�~����
=

c�«l �Re ® -����<
���(��| �<������K∗) + �|�

���(�|��������K∗) − f°
���¯�. 

The last term of the right-hand side of the bottom equality, −k� ���⁄ , is obviously imaginary and therefore can be ignored. 

To decompose the other terms into real and imaginary parts, 

we define 

± ≡ -����<
������| �<������K∗�, 

² ≡ �|�
���(�|��������K∗), 

and obtain 

Re(±) = <|�-���|���K∗�
<|��|����|���K∗�|, 

Re(²) = − �||
�||��|���|(K∗)|. 

Using these expressions, we obtain 

c�«l 
�Re(�)
�k �

~����
= c�«l�Re(±) + Re(²)� 

= c�«l 
��|(K∗)|<|��||��³�-���|���K∗���|(K∗)|���|�||(K∗)|
�<|��|����|���K∗�|���||��| ���|(K∗)|� �. 

The denominator of the right-hand side of the second 

equality is obviously imaginary. Therefore, we only have to 

observe the sign of the numerator. Substitute (22) into 2��-  

after dividing the numerator by q�-(#∗)- > 0 to obtain 

�||��³
��|(K∗)| + q--(b- − 1) + √� > 0. 
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